
4D LABS

4DGL
Programmers Reference Manual

and Language Specifications

Document Date: 20th March 2010
Document Revision: 2.0

© 2010 4D Labs www.4d-Labs.com Page 1 of 38

4DGL 4DGL - Programmers Reference Manual

Table of Contents

1. 4DGL INTRODUCTION...4
2. LANGUAGE SUMMARY...5
3. LANGUAGE STYLE...6

3.1 Numbers..6
3.2 Identifiers..6
3.3 Comments...6
3.4 Re-defining pre-processor directives..7

4. VARIABLES and CONSTANTS...8
4.1 Variables..8
4.2 Private Variables..9
4.3 Constants..10
4.4 Inbuilt Constants...11
4.5 Data Blocks: #DATA … #END..12

5. PRE-PROCESSOR DIRECTIVES..14
5.1 #IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount.........14
5.2 #STOP..14
5.3 #USE, USING..14
5.4 #inherit..15

6. EXPRESSIONS and OPERATORS...16
6.1 Assignment Operator ...16
6.2 Address Modifiers ..16
6.3 Arithmetic Operators ..16
6.4 Comparison Operators ..17
6.5 Boolean Logical Operators ..18
6.6 Bitwise operators ..19
6.7 Short Hand Notations ..21
6.8 Compound Assignment Operators ...22
6.9 Compound Bitwise operators ..22
6.10 Ternary Operator ..23

7. LANGUAGE FLOW CONTROL ..25
7.1 if … else … endif ..25
7.2 while … wend ...26
7.3 repeat … until/forever ..27
7.4 goto ..28
7.5 for....next ..28
7.6 switch case ...29
7.7 The Break and Continue statements ..30

8. FUNCTIONS and SUBROUTINES ..31
8.1 func … endfunc ...31
8.2 Functions with Arguments and Return value ..32
8.3 gosub … endsub ..33
8.4 SystemReset()..36
8.5 ProgramExit()..36

© 2010 4D Labs www.4d-Labs.com Page 2 of 38

4DGL 4DGL - Programmers Reference Manual

8.6 Argcount(function_name)...36
8.7 @ (the argument pointer)...36

9. PROCESSOR SPECIFIC INTERNAL FUNCTIONS..37
9.1 GOLDELOX-GFX2 Internal Functions (Chip Resident)..37
9.2 PICASO-GFX Internal Functions (Chip Resident)...37

Proprietary Information...38
Disclaimer of Warranties & Limitation of Liability...38

© 2010 4D Labs www.4d-Labs.com Page 3 of 38

4DGL 4DGL - Programmers Reference Manual

1. 4DGL INTRODUCTION

The 4D-Labs family of embedded graphics processors such as the : GOLDELOX-GFX, PICASO-GFX and the
DIABLO-GFX to name a few, are powered by a highly optimised soft core virtual engine, E.V.E. (Extensible
Virtual Engine).

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set
optimised to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed
from ground up for the EVE engine core. It is a high level language which is easy to learn and simple to
understand yet powerful enough to tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development. An extensive library of
graphics, text and file system functions and the ease of use of a language that combines the best elements
and syntax structure of languages such as C, Basic, Pascal, etc. Programmers familiar with these languages
will feel right at home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF,
WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO as well as a wealth of (chip-resident) internal
functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many more.

This document covers the language style, the syntax and flow control. This document should be used in
conjunction with processor specific internal functions documents, refer to section 8.

© 2010 4D Labs www.4d-Labs.com Page 4 of 38

GOLDELOX-GFX2 Internal Block Diagram

4DGL 4DGL - Programmers Reference Manual

2. LANGUAGE SUMMARY

The document is made up of the following sections:

• Language Style
Numbers, identifiers, comments

• Constants and Variables
var, var private, #constant, Inbuilt Constants, #CONST...#END, #DATA...#END

• Pre-Processor Directives
#IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount, #STOP, #USE ..
USING, #inherit

• Expressions and Operators
:=, &(address modifier), *, +, -, *, /, %, &(as a logial operator), |, ^, ==, !=, >, <, <=, &&, ||, !, <<, >>,
++, -- , +=, -=, *=, /=, %=, &=, |=, ^=, ternary operators

• Language Flow Control
if .. else .. endif, while .. wend, repeat .. until/forever, goto, for .. next, switch .. case

• Functions and Subroutines
gosub .. endsub, func .. endfunc, return, SystemReset, ProgramExit, Argcount, @(argument pointer)

• Processor Specific Internal Functions (Chip Resident)
GOLDELOX-GFX2 Internal Functions
PICASO-GFX Internal Functions

© 2010 4D Labs www.4d-Labs.com Page 5 of 38

4DGL 4DGL - Programmers Reference Manual

3. LANGUAGE STYLE

4DGL is a case sensitive language. The colour of the text, in the 4DGL Workshop IDE, reveals if the syntax
will be accepted by the compiler.

3.1 Numbers

Numbers may be defined as decimal, hex or binary.

0xAA55 // hex number
-1234 // decimal number
0b10011001 // binary number

3.2 Identifiers

Identifiers are names used for referencing variables, constants, functions and subroutines.

A Valid identifier: -
• Must begin with a letter of the English alphabet or possibly the underscore (_)
• Consists of alphanumeric characters and the underscore (_)
• May not contain special characters: ~ ! @ # $ % ^ & * () ` - = { } [] : " ; ' < > ? , . / |

Elements ignored by the compiler include spaces, new lines, and tabs. All these elements are collectively
known as the “white space”. White space serves only to make the code more legible – it does not affect the
actual compiling.

Note that an identifier for a subroutine must have a colon (:) appended to it. Subroutine names are scoped
locally inside functions, they are not accessible outside the function.

mysub:
 [statements]
endsub;

3.3 Comments

A comment is a line or paragraph of text in a program file such that that line or paragraph is not considered
when the compiler is processing the code of the file.

To write a comment on one line, type two forward slashes // and type the comment. Anything on the right
side of both forward slashes will not be read by the compiler.

Single line comment example:

// This is my comment
Also you can comment in multiple lines by enclosing between /* and */. See example.

© 2010 4D Labs www.4d-Labs.com Page 6 of 38

4DGL 4DGL - Programmers Reference Manual

Multi-Line comment example:

/*
This is a multi line
comment which can
span over many lines
*/

Also you can use multiple line comment in one line like:

/* This is my one line comment */

It is good to comment your code so that you or anybody else can later understand it. Also, comments are
useful to comment out sections of the code, so it can be left as a reminder about a modification that was
made, and perhaps be modified or repaired later. Comments should give meaningful information on what
the program is doing. Comment such as 'Set output 4' fails to state the purpose of instruction. Something
like 'Turn Talk LED ON' is much more useful.

3.4 Re-defining pre-processor directives

It is possible to add your own 'flavour' to the pre-processor by using the '$' (substitution directive).
For example, if you wanted to make your code look 'more C like' you can do the following,

Example:
//define some user preferences to make things look more 'C' like
#constant enum $#constant /* define the enum word*/
#constant #define $#constant /* define the #define word*/
#constant #ifdef $#IF EXISTS /* define the #ifdef word */
#constant #ifndef $#IFNOT EXISTS /* define the #ifndef word */
#constant #else $#ELSE /* define the #else word */
#constant #endif $#ENDIF /* define the #endif word */
#constant #include $#inherit /* define the #include word */
#constant #if $#IF /* define the #if word */

Now, the compiler will use these new words as aliases to the default directives.

© 2010 4D Labs www.4d-Labs.com Page 7 of 38

4DGL 4DGL - Programmers Reference Manual

4. VARIABLES and CONSTANTS

4.1 Variables

Like most programming languages, 4DGL is able to use and process named variables and their contents.
Variables are simply names used to refer to some location in memory - a location that holds a value with
which we are working with. Variables used by the -GFX based target platforms are signed 16 bit. Variables
are defined with the var statement, and are visible globally if placed outside a function (scope is global) or
private if placed inside a function (scope is local).

Type Resolution Range

Integer Signed 16 bit -32,768 to 32,767

Example:
var ball_x, ball_y, ball_r;
var ball_colour;
var xdir, var ydir;

Variables can also be an array such as:

var PlotInfoX[100], PlotInfoY[100]; // Index starting from 0 to 99.

Global and local variables can now be initialised when they are declared. GLODELOX-GFX and PICASO-GFX
now supports local arrays as well, however they must be used with caution due to stack size limitations,
especially on GOLDELOX-GFX. A variable or array can only be initialised with a constant value.

Example:
var myvar := 100;
var myArray[4] := [5,200,500,2000]; // initialise the array

You can also size an array by setting certain initialization values,

var myArray[] := [1,2,3,4]; // array is sized to 4

And, partial initializing,

var myBuffer[10] := [0xAA, 0x55]; // create buffer, initialize 2 entries

Note that arrays can only have a single dimension. Variables can also hold a pointer to a function or pointer
to other variables including arrays. Also, the index starts from 0.

Example:
var buffer[30]; // general purpose buffer for up to 60 bytes
var buffer2[30]; // general purpose buffer for up to 60 bytes

func main()
 buffer[0] := 'AB'; // put some characters into the buffer
 buffer[1] := 'CD'; // buffer is 16bits per location so chars are packed
 buffer2[0] := 'EF';
 buffer2[1] := 0;
 :

© 2010 4D Labs www.4d-Labs.com Page 8 of 38

4DGL 4DGL - Programmers Reference Manual

 :
endfunc

Example:
var funclist[2];

//--
func foo()
 [...some code here...]
endfunc
//--
func baa()
 [...some code here...]
endfunc
//--
func main()
 funclist[0] := foo; // load the function pointers into an array
 funclist[1]: = baa;
 funclist[0](); // execute foo
endfunc
//--

Notes concerning variables:

• Global variables and arrays are persistent and exist during the entire execution of a program.
• Global variables and arrays are visible to all functions and are considered a shared resource.
• Local variables are created on the stack and are only visible inside a function call.
• Local variables are released at the end of a function call.
• Local arrays are currently not supported.
• More data types will be added in future releases.

4.2 Private Variables

In the normal course of program execution, any variables declared locally in functions are discarded when
the function exits, freeing up the stack.

If we want the value of a variable or variable array to be retained after the function has executed, we
simply declare the variable as private.

A private variable may be initialised just like a normal global or local variable, however, it will only be
initialised once during the program initialisation in the start-up code (just like a global variable) therefore,
each time the function is called, the value that was set during initialisation is persistent.

Example:
func myfunc()
var private hitcounter := 100; // initial hitcounter value is 100
print(“\nHits = “,hitcounter++);
endfunc

In the above example, each time the function is called, “hitcounter” will be printed then incremented,
showing the number of times the function is called.

© 2010 4D Labs www.4d-Labs.com Page 9 of 38

4DGL 4DGL - Programmers Reference Manual

As stated above, Private variables are not built temporarily on the stack like normal local variables, they
consume space in the global memory space. Private variables can be accessed from any other function by
prepending the function name, followed by a period, to the private variable within that function.

Example:
func anotherfunc()
// code........
myfunc.hitcounter := 50; // set hitcounter in myfunc() to 50
// code.....
endfunc

4.3 Constants

A constant is a data value that cannot be changed during run-time. A constant can be declared as a single
line entry with the #constant directive. A block of constants can be declared with the #CONST and #END
directives. Every constant is declared with a unique name which must be a valid identifier.

It is a good practice to write constant names in uppercase. The constant's value can be expressed as
decimal, binary, hex or string. If a constants value is prepended with a $ it becomes a complete text
substitution with no validation during pre-processing.

Syntax:
#constant NAME value
or
#constant NAME1 := value1, NAME2 := value2,..., NAMEN := valueN
or
#constant NAME equation
or
#constant NAME $TextSubstitution
or
#CONST
 BUTTONCOLOUR 0xC0C0
 SLIDERMAX 200
#END

#constant : The required symbol to define.
NAME : The name of the constant
value : A value to set the symbol to

Example:
#constant GO_FLAG 16
#constant LOGON $Welcome

//in the function...
func main()
 var flags;
 flags := 16;
 if (flags && GO_FLAG)
 putstr (LOGON);
 run_process();
 endif
 :
endfunc

© 2010 4D Labs www.4d-Labs.com Page 10 of 38

4DGL 4DGL - Programmers Reference Manual

Note also that the := operator can be included for readability. For example,

#constant BUFSIZE1 := 10
#constant BUFSIZE2 := 20
#constant TOTALBUF := BUFSIZE1+BUFSIZE2
#constant BUF_SAFE_LIMIT := (BUFSIZE1+BUFSIZE2) * 750 / 1000 // 75% mark

#NOTICE "Buffer safe limit = ",BUF_SAFE_LIMIT // show in Workshop error
window

Constants can now be automatically enumerated ,

#constant Hearts, Diamonds, Clubs, Spades

each of the enumeration values is equated with a sequential number.

The enumeration will have the following values assigned,

Hearts = 0 , Diamonds = 1 , Clubs = 2 , Spades = 3.

You can also override the default number assignments. For example,

#constant Hearts:=10, Diamonds, Clubs:=20, Spades //now, Hearts = 10 ,
Diamonds = 1 1, Clubs = 2 0, Spades = 21

#constant must have all the definitions on the same line and traditionally is only used for single constant
initialisation. #CONST blocks are usually more readable for multiple constant assignments . For example,

#CONST
Hearts:=10,
Diamonds,
Clubs:=20,
Spades,
Total:= Hearts+Diamonds+Clubs+Spades

#END
#NOTICE “Total = “, Total // show result of constant 'Total'

4.4 Inbuilt Constants

The compiler now checks the program and memory sizes and reports error if amount is exceeded. This used
to be done by the Workshop. The following constants must be defined in the platforms fnc file for this to
work. For example,

Example:
#constant __MAXMEM 255
#constant __MAXPROG 9216

© 2010 4D Labs www.4d-Labs.com Page 11 of 38

4DGL 4DGL - Programmers Reference Manual

To allow the programmer to recognise what platform is being used, the device is also described with a
constant in the fnc file. For Goldelox,

//in the GOLDELOX-GFX2.fnc file we have
#constant GOLDELOX 1
#constant __PLATFORM GOLDELOX

This allows the programmer to make coding decisions,

#IF __PLATFORM == GOLDELOX
// code it this way
#ELSE
// code it that way
#ENDIF

4.5 Data Blocks: #DATA … #END

#DATA blocks reside in the CODE space and can be bytes or words. Data cannot be changed during run-time
(i.e. it is read only). A block of data can be indexed like an array. A block of data is declared with the #DATA
and #END directives. Every data entry is declared with a unique name which must be a valid identifier.

Syntax:
#DATA
 type name
 value1, value2, valueN
#END
or
#DATA
 type name value1, value2, valueN
#END
or
#DATA
 type name equation1, equation2,....equationN
#END
#DATA : The required symbol to define.
type : byte or word data type keyword
name : The name of the data array
value : A list of 8 bit or 16 bit values in the data array

Example1:
#DATA
 word values
 0x0123, 0x4567, 0x89AB, 0xCDEF
 byte hexval
 "0123456789ABCDEF"
#END
//and in a function,
func main()

© 2010 4D Labs www.4d-Labs.com Page 12 of 38

4DGL 4DGL - Programmers Reference Manual

 var ch, wd, index1, index2;
 ch := hexval[index1]; // load ch with the correct ascii character
 wd := values[index2]; // get the required value to wd
 :
 :
endfunc

#DATA statements can now contain pre-processor computed values. For example,

Example2:
#constant SPEED 33
#DATA
word mylimits (BUFSIZE1+BUFSIZE2) * 750 / 1000, 100, 200, (SPEED*20)
#END

func main()
var n;
for(n:=0; n < sizeof(mylimits); n++) print(mylimits[n],"\n");
endfunc

#DATA statements can reference functions and variables. For example,

Example3:
#DATA word myfuncs tom, dick, harry

func main() var n; for(n:=0; n < sizeof(myfuncs); n++) myfuncs[n]();
endfunc

func tom() putstr("Tom\n"); endfunc
func dick() putstr("Dick\n"); endfunc
func harry() putstr("Harry\n"); endfunc

© 2010 4D Labs www.4d-Labs.com Page 13 of 38

4DGL 4DGL - Programmers Reference Manual

5. PRE-PROCESSOR DIRECTIVES

5.1 #IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount

These pre-processor directives allows you to test the value of an arithmetic expression, or the existence of
a pre-defined constant or PmmC function name, or the size of a predefined array. #IFNOT gives the inverse
response of #IF. Combined with #ELSE and #ENDIF ,conditional inheritance of other files and control of
blocks of code can be performed.

Note: If you wish to add a comment following a preprocessor definition, the preferred style is /*.....*/ .
The // comment style will not work in many cases as it breaks the 'inline' rule by ignoring everything to the
end of line following the // comment directive.

Example:
#constant NUMBER 10000
var buffer[30];
#MESSAGE "Example Code" // messages go to the *.aux file
#IF (__PLATFORM == GOLDELOX) & (NUMBER == 10000)
#NOTICE "Compiling for Goldelox Project ", NUMBER, ", Buffer size is
",sizeof(buffer)
#ELSE
#ERROR "Unknown Platform"
#ENDIF

// check for existance of a PmmC function
#IF EXISTS gfx_Rectangle
#NOTICE "we have gfx_Rectangle, token value = ", gfx_Rectangle
#NOTICE "gfx_Rectangle requires ", argcount(gfx_Rectangle), " arguments"
#ELSE
func gfx_Rectangle(var x1,var y1,var x2, var y2, var colour)
// code your own function here
endfunc
#ENDIF

5.2 #STOP

#STOP terminates compilation , it is mainly used for debugging purposes to disable compilation of code
from a certain point onwards.

Example:
#STOP //compiler will stop here

5.3 #USE, USING

The compiler will compile all functions it finds, but will only link functions that are referenced. This allows
to inherit other files that could be considered as function libraries with your favourite routines in them.

To reduce compile time and improve code readability, the #USE and USING preprocessor directives are
used to selectively include functions in #inherited files, allowing you to build libraries of code, but only
selectively inherit the functions required by the project.

© 2010 4D Labs www.4d-Labs.com Page 14 of 38

4DGL 4DGL - Programmers Reference Manual

Example:
//In a file named mylib.lib
#IF USING tom

func tom() putstr("Tom\n"); endfunc
#ENDIF
#IF USING dick

func dick()
putstr("Dick\n");
endfunc

#ENDIF

#IF USING harry
func harry() putstr("Harry\n"); endfunc

#ENDIF
#IF USING george

func george() putstr("George\n"); endfunc
#ENDIF
//==
//now in your main file
#USE tom, george

//this instructs the compiler to compile those functions and use them
in //your program

func main()
tom();
george();
endfunc
// note that dick and harry are not compiled or linked

5.4 #inherit

#inherit "filename" includes another source file. Inherited files can be nested. Inherited files can now also
contain #DATA, functions and variables. There is no special ordering required for functions, func main can
now be the first function in the program if required, however, preprocessor calculation cannot be forward
referenced. There is now also a mechanism to allow selected portions of an inherited file to be compiled on
demand (see #USE and USING below).

Syntax:
#inherit “filename”

filename:”.fnc” file to be included in the program.
Example:
#platform "GOLDELOX-GFX2"
#inherit "4DGL_16bitColours.fnc"

func main()
:
:
endfunc

© 2010 4D Labs www.4d-Labs.com Page 15 of 38

4DGL 4DGL - Programmers Reference Manual

6. EXPRESSIONS and OPERATORS

Operators make 4DGL a powerful language. An operator is a function which is applied to values to give a
result. These operators take one or more values and perform a useful operation. The operators could be +,
-, & etc.

Most common ones are Arithmetic operators. Other operators are used for comparison of values,
combination of logical states and manipulation of individual binary digits.

Expressions are a combination of Operators and values. The values produced by these expressions can be
used as part of even larger expressions or they can be stored in variables.

6.1 Assignment Operator

“:=” Assign a value to a variable:

Example:
a := b c*(d-e)/e;
a := b + 22;

6.2 Address Modifiers

“&” Get the address of a variable:

Example:
a := &myArray[0];
a := myArray; // same effect as above. The array name without indices
 // implies an address, same as in the C language.
A := &b;

“*” Use a variable as a pointer:

Example:
a := *b; // can be used on left and/or right side of assignment operator.
*j := myArray;
*d := *s;

6.3 Arithmetic Operators

“+” Addition:

Example:
val1 := 5;
val2 := 10;
sum := val1 + val2;

“-” Subtraction:

Example:
val1 := 5;
val2 := 10;
diff := val2 - val1;

© 2010 4D Labs www.4d-Labs.com Page 16 of 38

4DGL 4DGL - Programmers Reference Manual

“*” Multiplication:

Example:
velocity := 5;
time := 10;
displacement := velocity * time;
GOLDELOX-GFX2: the overflow (bits 16 to 31) is placed into the SYS_OVERFLOW register which can
be read by the OVF() function.

“/” Division:

Example:
delta := 5;
length := 10;
strain := delta/length;
GOLDELOX-GFX2: the remainder is placed into the SYS_OVERFLOW register which can be read by
the OVF() function.

“%” Modulus:

Example:
a := 3;
b := 11;
remainder := b%a; // remainder is 2

*, / and % have the higher precedence and the operation will be performed before + or - in any expression.
Brackets should be used to enforce a different order of evaluation. Where division is performed between
two integers, the result will be an integer, with remainder discarded. If a program is ever required to divide
a number by zero, this will cause an error, usually causing the program to crash.

6.4 Comparison Operators

4DGL has set of logical operators useful for performing comparisons. These operators all return a TRUE (1)
or FALSE (0) depending on the result of the comparison. These comparisons are most frequently used to
control an if statement or a repeat or a while loop. Note that == is used in comparisons and := is used in
assignments.

“==” Equals test:

Example:
if(index == count) print(“count complete”);

“>” Greater Than test:

Example:
while(index > 0)
 ..
 index--;
wend

© 2010 4D Labs www.4d-Labs.com Page 17 of 38

4DGL 4DGL - Programmers Reference Manual

“>=” Greater Than or Equals test:

Example:
while(index >= 0)
 ..
 index--;
wend

“<” Less Than test:

Example:
while(index < 10)
 ..
 index++;
wend

“<=” Less Than or Equals test:

Example:
while(index <= 10)
 ..
 index++;
wend

6.5 Boolean Logical Operators

4DGL provides common logical operators designed to return TRUE (1) or FALSE (0) depending on the result
of the expression. These operators both return boolean results and take boolean values as operands.

“!=” Not Equals test:

Example1:
if(denominator != 0)

result := numerator/denominator;
endif

The NOT (!) operator inverts the boolean result of a value, or the result of an expression. For example, if a
variable named flag is currently 55 , prefixing the variable with a '!' character will make the result FALSE (0).

Example2:
var flag := 55; //variable is non zero
var flag2;
flag2 := !flag; // flag2 set to FALSE (0)
flag2 := !flag; // now flag2 set to TRUE (1)

“&&” Logical AND test:

Example:
if(x < 10 && x > 5) print(“x within range”);

© 2010 4D Labs www.4d-Labs.com Page 18 of 38

4DGL 4DGL - Programmers Reference Manual

“||” Logical OR test:

Example:
if(x > 10 || x < 5) print(“x out of range”);

“^” Logical XOR test:

Example:
if ((A< B) ^ (C < D))

putstr("Expression is true");
endif

6.6 Bitwise operators

“&” Bitwise AND:

The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two
numbers. Any corresponding position in the binary sequence of each number where both bits are 1 results
in a 1 appearing in the same position of the resulting number. If either bit position contains a 0 then a zero
appears in the result.

Example:
var j := 0b0000000010101011; var k := 3; var r;
r := k & j; // Perform bitwise AND on variables k and j
print(“The result is ", r); // Result is 3

“|” Bitwise OR:

The bitwise OR performs a bit by bit comparison of two binary numbers. The OR operator places a 1 in the
result if there is a 1 in the first or second operand.

Example:
var j := 0b0000000010101011;
var k := 3;
var r;
r := k | j; // Perform bitwise OR on variables k and j
print(“The result is ", r); // Result is 171

“^” Bitwise XOR:

The bitwise XOR sets a 1 if one or other corresponding bit positions in the two numbers is 1. If both
positions are a 1 or a 0 then the corresponding bit in the result is set to a 0.

Example:
var j := 0b10101011;
var k := 3;
var r;
r := k ^ j; // Perform bitwise OR on variables k and j
print(“The result is ", r); // Result is 168

© 2010 4D Labs www.4d-Labs.com Page 19 of 38

4DGL 4DGL - Programmers Reference Manual

“<<” Shift Left:

The bitwise left shift moves each bit in a binary number a specified number of positions to the left. As the
bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those
high bits are shifted into the VM_OVERFLOW register and can be read with OVF() function (VM_OVERFLOW
can also be read using peekW(VM_OVERFLOW).

Example:
var k := 0b0110111100000000; // 28416
var r;
pokeW(VM_OVERFLOW, 0); // clear the overflow register
r := k << 3; // shift k 3 bit positions to the left
print(“The result is ", r, “OVF() = “, OVF());

The above code would display the shifted result, which is 3552 and the overflow value is 3.

The VM_OVERFLOW register is not cleared prior to a shift, this allows you to do interesting things such as
rotating an array. The VM_OVERFLOW register must be cleared (or preset to a required value) prior to using
the shift instruction if you wish to obtain the correct result.

GOLDELOX-GFX2: the most significant bit goes out and into the SYS_OVERFLOW register which can be read
by the OVF() function.

“>>” Shift Right:

A bitwise right shift is much the same as a left shift except that the shift takes place in the opposite
direction. Note that the low order bits that are shifted off to the right are shifted into the VM_OVERFLOW
register and can be read with OVF() function (VM_OVERFLOW can also be read using
peekW(VM_OVERFLOW); Whether or not the vacated high order bit(s) positions are replaced with zeros or
ones depends on the SIGN of the number .

Example:
var k := 0b0000000010101011; // 171
var r;
pokeW(VM_OVERFLOW, 0); // clear the overflow register
r := k << 3; // shift k 3 bit positions to the left
print(“The result is ", r, “OVF() = “, OVF());

The above code would display the shifted result, which is 21 and the overflow value is 16384.

The VM_OVERFLOW register is not cleared prior to a shift, this allows you to do interesting things such as
rotating an array. The VM_OVERFLOW register must be cleared (or preset to a required value) prior to using
the shift instruction if you wish to obtain the correct result.

GOLDELOX-GFX2: the least significant bit goes out and into the SYS_OVERFLOW register which can be read
by the OVF() function.

© 2010 4D Labs www.4d-Labs.com Page 20 of 38

4DGL 4DGL - Programmers Reference Manual

6.7 Short Hand Notations

The iterator(..); function can be used to modify the post or pre increment value for the next execution of
the Post/Pre increment and decrement operation. The increment value is automatically set back to 1 after
the next Post/Pre increment and decrement operation.

“var++” Post-Increment:

Example:
x := a*b++;
// equivalent to
x := a*b;
b := b+1;

“++var” Pre-Increment:

Example:
x := ++b*a;
// equivalent to
b := b+1;
x := a*b;

“var--” Post-Decrement:

Example:
x := a*b--;
// equivalent to
x := a*b;
b := b-1;

“--var” Pre-Decrement:

Example:
x := --b*a;
// equivalent to
b := b-11;
x := a*b;

Example:
//Using iterator
iterator(10);
myarray[x++] := 123;

// equivalent to
myarray[x] := 123;
x := x + 10;

© 2010 4D Labs www.4d-Labs.com Page 21 of 38

4DGL 4DGL - Programmers Reference Manual

6.8 Compound Assignment Operators

4DGL now provides a number of operators designed to combine an assignment with a mathematical or
logical operation. These are primarily of use when performing an evaluation where the result is to be stored
in one of the operands. For example, you may write an expression as follows:

+= operator

Example:
k += j;
//Add j to k and place result in k

-= operator

Example:
k -= j;
//Subtract j from k and place result in k

*= operator

Example:
k *= j;
Multiply k by j and place result in k

/= operator

Example:
k /= j;
//Divide k by j and place result in k

%= operator

Example:
k %= j;
//Perform Modulo of j on k and place result in k

Note that any overflow situation from the math operators can be obtained by reading the VM_OVERFLOW
register. It can be read with OVF() function (VM_OVERFLOW can also be read using
peekW(VM_OVERFLOW).

6.9 Compound Bitwise operators

Like the arithmetic operators, each bitwise operator has a corresponding compound operator that allows
the operation and assignment to be performed using a single operator.

“&=” Compound Bitwise AND:

Example:
k &= j
Perform a bitwise AND of k and j and assign result to k

© 2010 4D Labs www.4d-Labs.com Page 22 of 38

4DGL 4DGL - Programmers Reference Manual

“|=” Compound Bitwise OR:

Example:
k |= j
Perform a bitwise OR of k and j and assign result to k

“^=” Compound Bitwise XOR:

Example:
k ^= j
Perform a bitwise XOR of k and j and assign result to k

Note that any overflow situation from the math operators can be obtained by reading the VM_OVERFLOW
register. It can be read with OVF() function (VM_OVERFLOW can also be read using
peekW(VM_OVERFLOW).

6.10 Ternary Operator

4DGL now includes the ternary operator , a shortcut way of making decisions.
Syntax:
[condition] ? [true expression] : [false expression]

The way this usually works is that [condition] is replaced with an expression that will return either TRUE (1)
or FALSE (0). If the result is true then the expression that replaces the [true expression] is evaluated.
Conversely, if the result was false then the [false expression] is evaluated.

Example:
var k:=20, j:=40;
var r;
r := (k > j) ? k : j ;
print(“Larger number is “, r);

The above code example will evaluate whether k is greater than j, this will evaluate to false resulting in j
being returned to r.

print((RAND()<10000) ? 1 : 0);
The above code example will print a '1' if the random number is < 1000, else it will print a '0'.

print([STR] (RAND()<10000) ? "low " : "high");
The above code example will print “low” ' if the random number is < 1000, else it will print “high”

(n >= 45 && n <= 55) ? myfunc1() : myfunc2();
The above code example will call myfunc1() if the number lies between 45 and 55 inclusive, else it will call
myfunc2() . The functions may have arguments if required

Any number of expressions may occur to the left and right of the colon (:), however, only the rightmost

© 2010 4D Labs www.4d-Labs.com Page 23 of 38

4DGL 4DGL - Programmers Reference Manual

comma separated element will actually return a value, for example, in the following code,

r := (n >= 45 && n <= 55) ? myfunc1() : myfunc2(), X++;

myfunc1() will be called if the number lies between 45 and 55 inclusive and r will receive its return value,
else myfunc2() will be called, but actually returns the value of X (X is then incremented).

The return value (if any) from myfunc2() is discarded.

© 2010 4D Labs www.4d-Labs.com Page 24 of 38

4DGL 4DGL - Programmers Reference Manual

7. LANGUAGE FLOW CONTROL

7.1 if … else … endif

The if-else statement is a two-way decision statement. The if statement answers the question, “Is this true
or false?", then proceeds on some action based on this. If the condition was true then the statement(s)
following the if is executed and if the condition was false then the statement(s) following the else is
executed.

Syntax:
if(condition)
 [statements]
else
 [statements]
endif
or
if(condition) statement;
or
if(condition) statement; else statement;
condition : Required conditional expression to evaluate.
statements: Optional block of statements or single statement to be
 executed.
statement : Optional single statement.

Example:
func collision()
 if(ball_x <= LEFTWALL)
 ball_x := LEFTWALL;
 ball_colour := LEFTCOLOUR;
 xdir := -xdir;
 endif
 if(ball_x >= RIGHTWALL)
 ball_x := RIGHTWALL;
 ball_colour := RIGHTCOLOUR;
 xdir := -xdir;
 endif
endfunc

© 2010 4D Labs www.4d-Labs.com Page 25 of 38

4DGL 4DGL - Programmers Reference Manual

7.2 while … wend

Loop through a block of statements while a specified condition is true. Note that the while statement may
be used on a single line without the wend statement. The while … wend loop evaluates an expression
before executing the code up to the end of the block that is marked with a wend. If the expression
evaluates to FALSE on the first check then the code is not executed.

Syntax:
while(condition)
 [statements]
 [break;]
 [continue;]
wend
or
while(condition) statement;
or
while(conditional statement);
condition : Required condition to evaluate each time through the loop. The
loop will be executed while the condition is true.
statement : Optional block of statements to execute.
wend : Required keyword to specify the end of the while loop.
Related statements (only if in block mode):
break; : Break out of the while loop by jumping to the statement following
the wend keyword (optional).
continue; : Skip back to beginning of the while loop and re-evaluate the
condition (optional).

Example:
i := 0;
val := 5;

while(i < val)
 myVar := myVar * i;
 i++;
wend

Example:
i := 0;
val := 5;

while(i < val) myVar := myVar * i++;

Example:
/*
This example shows the
nesting of the while..wend loops
*/

var rad, color, counter;
func main()
 color := 0xF0F0;
 gfx_Set(0, 1); // set PenSize to 1 for outline objects

© 2010 4D Labs www.4d-Labs.com Page 26 of 38

4DGL 4DGL - Programmers Reference Manual

 while(counter++ != 1000)
 rad := 10;
 while(rad < 100)
 gfx_Circle(120, 160, rad++, color++);
 gfx_Ellipse(120, 160, 20, rad++, color++);
 gfx_Ellipse(120, 160, rad++, 20, color++);
 gfx_Line(120, 160, 20, rad++, color++);
 gfx_Rectangle(10, 10, rad++, rad++, color++);
 display_Vsync(); // wait for VSYNC as a delay
 wend
 wend
endfunc

7.3 repeat … until/forever
Loop through a block of statements until a specified condition is true. The statement block will always
execute at least once even if the until(condition) result is true. For example, you may need to step through
an array until a specific item is found.

The repeat statement may also be used on a single line with until(condition);

Syntax:
repeat
 [statements]
 [break;]
 [continue;]
until(condition);
or
repeat
 [statements]
 [break;]
 [continue;]
forever
or
repeat (statement); until(condition);
condition : Required condition to evaluate at the end of the loop. The
loop will be repeated until the condition is true.
statement : Optional block of statements to execute.
until : Required keyword to specify the end of the repeat loop.
Related statements (only if in block mode):
break; : Break out of the repeat loop by jumping to the statement
following the until(condition) or forever keywords (optional).
continue; : Skip back to beginning of the repeat loop (optional).

Example:
i := 0;
repeat
 myVar := myVar * i;
 i++;
until(i >= 5);

© 2010 4D Labs www.4d-Labs.com Page 27 of 38

4DGL 4DGL - Programmers Reference Manual

Example:
i := 0;
repeat
 myVar := myVar * i;
 i++;
 if(i >= 5) break;
forever

Example:
i := 0;
repeat i++; until(i >= 5);

7.4 goto

The goto instruction will force a jump to the label and continue execution from the statement following the
label. Unlike the gosub there is no return. It is strongly recommended that 'goto' SHOULD NEVER BE USED,
however, it is included in the language for completeness.

The goto statement can only be used within a function and all labels are private within the function body.
All labels must be followed by a colon ':'.

Syntax:
 goto label; // branches to the statements at label:
 ...
label:
 [statements]
 [statements]

label : Required label for the goto jump

Example:
func main()
 if(x<20) goto bypass1;
 print("X too small");
 x := 20;
bypass1:
 if(y<50) goto bypass2;
 print("Y too small");
 y := 50;
bypass2:
 // more code here
endfunc

7.5 for....next

Repeats a set of statement certain number of times.

It is possible to do things like x++, x := x + 10, or even x := random (5) and if you really wanted to, you could
call other functions that do nothing to the variable but still have a useful effect on the code. Notice that a
semicolon separates each of these sections, that is important. Also note that every single one of the

© 2010 4D Labs www.4d-Labs.com Page 28 of 38

4DGL 4DGL - Programmers Reference Manual

sections may be empty, though the semicolons still have to be there. If the condition is empty, it is
evaluated as true and the loop will repeat until something else stops it, like a break statement within the
loop body .

Syntax:
for (variable initialisation; condition; variable update)
// statements to execute while the condition is true
next
variable initialization : Assign a value to an already existing variable.
More than one variable may be initialized here, not necessarily associated
with the loop control.
Condition : condition part tells the program that while the conditional
expression is true the loop should continue to repeat itself.
Variable update : The amount by which variable is changed each time
through the loop
Statement : Statements to execute while condition is true.
Next : Terminates the definition of the For/Next loop.
Related statements (only if in block mode):
break; : Break out of the For/Next loop by jumping to the statement
following the “Next”.
continue; : Skip back to beginning of the For/Next updater (last part).

Example:
func main()
for (rad:=0; rad<100; rad++)

gfx_Circle(63, 63, rad, color);
next

If a for loop is on a single line, 'next' may be omitted,

for (n:=5; n<15; n++) myfunc();

7.6 switch case

Runs one of several groups of statements, depending on the value of an expression.

Syntax:
switch // switch has no expression

case (expression)
//statements

 break; // optional – skip rest of evaluations
case (expression)

 //statements
 case (expression)
 //statements
 break; // optional – skip rest of evaluations

default:
statements
break; // optional, ignored in case default

endswitch

© 2010 4D Labs www.4d-Labs.com Page 29 of 38

4DGL 4DGL - Programmers Reference Manual

expression: expression to be assessed, if true the statements within will
be executed.
break: breaks out of the switch
default : If none of the expressions are true, default is executed

Notes:

• The switch has no expression, cases are expressions.

• The default statement must be last.

• Any break statement will cause the rest of the case evaluation to be skipped.

7.7 The Break and Continue statements

It is possible exit from a while, repeat, or for loop at any time by using the break statement. When the
execution path encounters a break statement the looping will stop and execution will proceed to the code
immediately following the loop.

It is important to note that in the case of nested loops the break statement only exits the current loop
leaving the outer loop to continue executing .

The continue statement causes all remaining code statements in a loop to be skipped and execution to be
returned to the top of the loop.

Example:
func main()

while (n < 20)
n++;
if ((n == 3) continue;
if (n == 7) break; // output is 12456

 print(n);
wend

:
:
endfunc

In the above example, continue statement will cause the printing of “n” be skipped when it equals 3 and
the break statement will cause loop termination when “n” reaches 7.

© 2010 4D Labs www.4d-Labs.com Page 30 of 38

4DGL 4DGL - Programmers Reference Manual

8. FUNCTIONS and SUBROUTINES

8.1 func … endfunc

A function in 4DGL, just as in the C language, is a block of code that performs a specific task. Each function
has a unique name and it is reusable i.e. it can be called and executed from as many different parts in a
4DGL program. A function can also optionally return a value to the calling program. Functions can also be
viewed as small programs on their own.

Some of the properties of functions in 4DGL are:

• A function must have a unique name and it is this name that is used to call the function from other
functions, including main().

• A function performs a specific task and the task is some distinct work that the program must
perform as part of its overall operation.

• A function is an independent smaller program which can be easily removed and debugged.
• A function will always return to the calling program and can optionally return a value.

Functions have several advantages:

• Less code duplication – easier to read / update programs
• Simplifies debugging – each function can be verified separately
• Reusable code – the same functions can be used in different programs

Syntax:
func name([var parameter1], [var parameter2,…[var parameterN]])
 [statements]
 [return;]
 //OR
 [return (value);]
endfunc
name : Required name for the function.
var parameters : Optional list of parameters to be passed to the function.
statements : A block of statements that make up the body of the function.
return : Exit this function, returning control back to the calling
function (optional).
return value : Exit this function, with a variable or expression to return
a value for this function (optional).

Notes:
 - Functions must be created before they can be used.
 - Functions can optionally return a value.

Example1:
/*
This example shows how to create a function and its usage in calling and
passing parameters.

© 2010 4D Labs www.4d-Labs.com Page 31 of 38

4DGL 4DGL - Programmers Reference Manual

*/

func add2(var x, var y)
 var z;
 z := x + y;
 return z;
endfunc
func main()
 var a;
 a := add2(10, 4);
 print(a);
endfunc

Functions can now be on a single line,

Example1:
func myfunc(var n) print(“Error: “, [STR] errorstrings[n]; endfunc

As long as there is no forward references that need to be calculated, the ordering of functions no longer
needs to be ordered with strict backward referencing.

A 4DGL program must have a starting origin where the point of execution begins. When a 4DGL program is
launched, EVE processor takes control and needs a specific starting point. This starting point is the main()
function and every 4DGL program must have one. The main() function is the block of code that makes the
whole program work.

8.2 Functions with Arguments and Return value
In other languages and in mathematics a function is understood to be something which produces a value or
a number. That is, the whole function is thought of as having a value. In 4DGL it is possible to choose
whether or not a function will have a value. It is possible to make a function return a value to the place at
which it was called.

Example:
bill = CalculateBill(data,...);

The variable bill is assigned to a function CalculateBill() and data are some data which are passed to the
function. This statement makes it look as though CalculateBill() is a number. When this statement is
executed in a program, control will be passed to the function CalculateBill() and, when it is done, this
function will then hand control back. The value of the function is assigned to "bill" and the program
continues. Functions which work in this way are said to return a value.

In 4DGL, returning a value is a simple matter. Consider the function CalculateBill() from the statement
above:

func CalculateBill(var starter, var main, var dessert) // Adds up values
var total;
total := starter + main + dessert;
return (total);

© 2010 4D Labs www.4d-Labs.com Page 32 of 38

4DGL 4DGL - Programmers Reference Manual

endfunc

As soon as the return statement is met CalculateBill() stops executing and assigns the value total to the
function. If there were no return statement the program could not know which value it should associate
with the name CalculateBill and so it would not be meaningful to speak of the function as having one value.
Forgetting a return statement can ruin a program, then the value bill would just be garbage (no predictable
value), presuming that the compiler allowed this to be written at all.

8.3 gosub … endsub

The gosub starts executing the statements at the label (subroutine name) until it reaches endsub and
returns to continue after the gosub statement. The gosub statement can only be used within a function and
all gosub labels are private within the function body. All subroutines must end with endsub; All labels must
be followed by a colon ':'.

There are 2 versions of gosub as shown below:

Syntax1:
gosub label;
…
label:
 [statements]
endsub;

label : label, where the gosub is directing to.

The above version (syntax1) executes the statements at label:. When the endsub; statement is reached,
execution resumes with the statement following the gosub statement. The code between label: and the
endsub; statement is called a subroutine.

Example:
func myfunc()
 gosub mysub1;
 gosub mysub2;
 gosub mysub3;
 print("\nAll Done\n")
 return; // return from function *** see below

 mysub1:
 print("\nexecuted sub #1");
 endsub; // return from subroutine

 mysub2:
 print("\nexecuted sub #2");
 endsub; // return from subroutine

 mysub3:
 print("\nexecuted sub #3");
 endsub; // return from subroutine
endfunc

© 2010 4D Labs www.4d-Labs.com Page 33 of 38

4DGL 4DGL - Programmers Reference Manual

func main()
 myfunc();
endfunc

Notes:

• The gosub function can only be used within a function.

• All gosub labels are private within the function body.

• All subroutines must end with endsub;

• All labels must be followed by a colon.

• ** A common mistake is to forget the 'return' to return from a subroutine within a function.

Syntax2:
gosub (index), (label1, label2,.., labelN);
…
label1:
 [statements]
endsub;

label2:
 [statements]
endsub;
…
labelN:
 [statements]
endsub;

The above version (syntax2) uses index to index into the list of gosub labels. Execution resumes with the
statement following the gosub statement. For example, if index is zero or index is greater than the number
of labels in the list, the subroutine named by the first label in the list is executed. If index is one, then the
second label and so on.

Note: If index is zero or greater than the number of labels, the first label is always executed.

Example:
func myfunc(var key)
 var r;

 to(COM0); // set redirection for the next print command to the
 // COM port
 r := lookup8(key, "fbsclx?h");
 gosub(r), (unknown,foreward,backward,set,clear,load,exit,help,help);
 goto done;

 help:
 putstr("Menu f,b,i,d,s,c,l or x (? or h for help)\n");
 endsub;
 unknown:
 print("\nBad command '",[CHR] key,"' ?");
 /* more code here */
 endsub;
 foreward:
 print("\nFOREWARD ");
 /* more code here */

© 2010 4D Labs www.4d-Labs.com Page 34 of 38

4DGL 4DGL - Programmers Reference Manual

 endsub;
 backward:
 print("\nBACKWARD ");
 /* more code here */
 endsub;
 set:
 print("\SET ");
 /* more code here */
 endsub;
 clear:
 print("\nCLEAR ");
 /* more code here */
 endsub;
 load:
 print("\nLOAD ");
 /* more code here */
 endsub;
 exit:
 print("\nEXIT");
 print("\nbye....");
 /* more code here */
 r := -1; // signal an exit
 endsub;
 done:
 return r;
endfunc
//==
func main()
 var char;
 putstr("Open the Workshop terminal\n");
 putstr("Enter f,b,i,d,s,c,l or x\n");
 putstr("Enter ? or h for help\n");
 putstr("Enter x for exit\n");
 char := '?';
 goto here; // enter here to show help menu first up
 repeat
 while((char := serin()) < 0); // wait for a character
here:
 if(myfunc(char) == -1) break; // keep going until we get the exit
command
 forever
 putstr("\nEXITING");
endfunc
//==

Notes:
• The indexed gosub function can only be used within a function.
• All gosub labels are private within the function body.
• All subroutines must end with endsub;

• All labels must be followed by a colon.

• If index is zero or greater than the number of labels, the first label is always executed.

• ** A common mistake is to forget the 'return' to return from a subroutine within a function.

© 2010 4D Labs www.4d-Labs.com Page 35 of 38

4DGL 4DGL - Programmers Reference Manual

8.4 SystemReset()

This function resets and restarts the program, It is the equivalent of a 'cold boot' (i.e. a total hardware
reset). There is a 2 second delay before the program restarts, this is due to the EVE boot procedure time.

8.5 ProgramExit()

This function resets contrast to 0 and puts the display into low power sleep mode. For some devices, the
only wakeup procedure is a reset or power cycle. Refer to individual module or chip specifications for
information on other sleep / wakeup modes.

8.6 Argcount(function_name)

This compiler function returns then number of arguments required by a PmmC or user function. It is used
often for getting the argument count when using the '@' operator when using a function pointer.

8.7 @ (the argument pointer)

Function arguments can now be passed using the special pointer operator '@'.

Example:
#constant rsize argcount(gfx_Rectangle) // define rsize for number of
args to gfx_Rectangle()
var rect[rsize * 4], n; // an array to hold info for 4 rectangles

func main()
// initialize some default rectangle co-ords
*rect := [10,10,40,40,RED,88,10,118,40,GREEN,10,88,40,118,BLUE,88,88,118,
118,YELLOW];

for (n:=0; n < 4*rsize ; n+=rsize)
gfx_Rectangle(@ rect+n);//draw all rectangles using arg pointer

//offset by n
next
repeat forever // done
endfunc

//alternatively, the ++ iterator can be employed which is a little more
//code efficient, a little faster in execution speed and allows a
little //more flexibility. Note that the iterator value is not 'sticky'
and
// is reset to 1 once 'ndx++' is executed
ndx:=0;
while(ndx<4)

iterator(rsize);// set the iterator to the size of args for 'ndx++'
 gfx_Rectangle(@rect + ndx++); // draw new rectangles, bump iterator
wend

© 2010 4D Labs www.4d-Labs.com Page 36 of 38

4DGL 4DGL - Programmers Reference Manual

9. PROCESSOR SPECIFIC INTERNAL FUNCTIONS

9.1 GOLDELOX-GFX2 Internal Functions (Chip Resident)

Refer to the external document:
GOLDELOX-GFX2-4DGL-Internal-Functions.pdf

9.2 PICASO-GFX Internal Functions (Chip Resident)

Refer to the external document:
PICASO-GFX-4DGL-Internal-Functions.pdf

© 2010 4D Labs www.4d-Labs.com Page 37 of 38

4DGL 4DGL - Programmers Reference Manual

Proprietary Information

The information contained in this document is the property of 4D Labs Pty. Ltd. and may be the subject of
patents pending or granted, and must not be copied or disclosed with out prior written permission.

4D Labs endeavours to ensure that the information in this document is correct and fairly stated but does
not accept liability for any error or omission. The development of 4D Labs products and services is
continuous and published information may not be up to date. It is important to check the current position
with 4D Labs.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Labs makes no warranty, either express or implied with respect to any product, and specifically disclaims
all other warranties, including, without limitation, warranties for merchantability, non-infringement and
fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application
meets with your specifications.

In no event shall 4D Labs be liable to the buyer or to any third party for any indirect, incidental, special,
consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss
of business opportunity) arising out of or relating to any product or service provided or to be provided by
4D Labs, or the use or inability to use the same, even if 4D Labs has been advised of the possibility of such
damages.

Use of 4D Labs’ devices in life support and/or safety applications is entirely at the buyer’s risk, and the
buyer agrees to defend, indemnify and hold harmless 4D Labs from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Labs
intellectual property rights.

Copyright 4D Labs Pty. Ltd. 2000-2010.

© 2010 4D Labs www.4d-Labs.com Page 38 of 38

	1. 4DGL INTRODUCTION
	2. LANGUAGE SUMMARY
	3. LANGUAGE STYLE
	3.1 Numbers
	3.2 Identifiers
	3.3 Comments
	3.4 Re-defining pre-processor directives

	4. VARIABLES and CONSTANTS
	4.1 Variables
	4.2 Private Variables
	4.3 Constants
	4.4 Inbuilt Constants
	4.5 Data Blocks: #DATA … #END

	5. PRE-PROCESSOR DIRECTIVES
	5.1 #IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount
	5.2 #STOP
	5.3 #USE, USING
	5.4 #inherit

	6. EXPRESSIONS and OPERATORS
	6.1 Assignment Operator
	6.2 Address Modifiers
	6.3 Arithmetic Operators
	6.4 Comparison Operators
	6.5 Boolean Logical Operators
	6.6 Bitwise operators
	6.7 Short Hand Notations
	6.8 Compound Assignment Operators
	6.9 Compound Bitwise operators
	6.10 Ternary Operator

	7. LANGUAGE FLOW CONTROL
	7.1 if … else … endif
	7.2 while … wend
	7.3 repeat … until/forever
	7.4 goto
	7.5 for....next
	7.6 switch case
	7.7 The Break and Continue statements

	8. FUNCTIONS and SUBROUTINES
	8.1 func … endfunc
	8.2 Functions with Arguments and Return value
	8.3 gosub … endsub
	8.4 SystemReset()
	8.5 ProgramExit()
	8.6 Argcount(function_name)
	8.7 @ (the argument pointer)

	9. PROCESSOR SPECIFIC INTERNAL FUNCTIONS
	9.1 GOLDELOX-GFX2 Internal Functions (Chip Resident)
	9.2 PICASO-GFX Internal Functions (Chip Resident)

	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

